VisualBoyAdvance & VisualBoyAdvance-M - vulnerabilities in
ELF file parser allow for code execution and information
disclosure

ThezZzZAZZGlitch, 2018

Abstract

VisualBoyAdvance (VBA) is an open-source software emulator for Nintendo’s
handheld video game consoles, the GameBoy Color and the GameBoy
Advance. VBA has been discontinued in 2004 and the original version is no
longer maintained. However, many attempts have been made to adopt the
abandoned codebase and continue the project. VisualBoyAdvance-M (VBA-M) is
a modern counterpart to the original VisualBoyAdvance emulator, which
continues to be actively developed to this date.

The software supports loading files in several different formats — this includes
the ELF file format. To achieve this, VBA, and consequently VBA-M, both
implement a highly simplistic, custom parser for ELF files. Several security
vulnerabilities exist in this crude implementation, ranging from low to high
severity. Some of them can be exploited to leak information from the host to
the emulated environment. Under the right conditions, code execution is also
possible, allowing the emulated binary to fully control the host system.

This document describes the found vulnerabilities and provides practical
examples of exploitation whenever possible. Note that VBA-M is able to run on
several different platforms, but all exploitation examples will assume the code
runs under Windows - the dominant operating system amongst the emulator's
user base.

Short description of the ELF file format

The Executable and Linkable Format (ELF) is a common file format for
executable files. VBA and VBA-M support loading ELF files created for the
GameBoy Advance’s ARMv4 architecture. A valid ELF file should start with a file
header, containing basic information about the executable. The file header
then provides pointers to program header table and section header table. Each
entry in those tables is used to describe the process of loading the executable
- loading data into appropriate memory locations, or providing additional
information about the executable, like debug symbols. Full explanation of the
ELF file format is out of scope for this document, but those basic concepts are
enough to understand the presented vulnerabilities.

Wrong memory accesses with invalid offsets in PT_LOAD segments

A PT_LOAD entry in the program header table instructs the loader to insert



specific bytes at a specific memory location in the loaded program's address
space - a simple binary copy. VBA handles this case as follows:

if(READ32LE (&ph->paddr) >= 0x8000000 &&
READ32LE (&ph->paddr) <= ox9ffffff) {
memcpy (& om[READ32LE (&ph->paddr) & Ox1ffffff],
data + READ32LE(&ph->offset),
READ32LE (&ph->filesz)) s
size += READ32LE(&ph->filesz);
}

VisualBoyAdvance source code, elf.cpp:2662

GameBoy Advance (the emulated system) has its ROM memory mapped
into addresses 0x08000000 through OxO9FFFFFF. The first if statement
ensures that the code deals only with ROM addresses.

ph->offset should be an offset within the ELF image from which the
section data is loaded.

The ph->paddr member specifies the memory address where the
section should be loaded to. However, this address is provided with
respect to the emulated program's address space - so the obtained
address is converted to an array offset. The target array contains the
emulated memory (ROM in this case).

ph->filesz is the section's size.

The offsets and addresses are loaded directly from the ELF image and they are
not sanitized in any way, excluding the starting if statement. There are two
potential vulnerabilities here:

While the code logic ensures that the loading address is valid, it does
not take the section size into account. Loading a section with size
exceeding 0x2000000 bytes, would cause data to be copied beyond the
destination array (rom in this case). This array is allocated on the heap,
so the result is a fully controlled heap buffer overflow. This may or may
not lead to code execution, depending on the platform the software is
running on. Because heap buffer overflows tend to be hard to reliably
exploit, this attack vector is not investigated further in this document.

No checks of any kind are done on the source pointer. By providing a
section offset exceeding the size of the loaded ELF file, it's possible to
read from unrelated memory areas. This leads to an information
disclosure bug, where the emulated image can read arbitrary data from
the emulator's process memory.




Demonstration of the above vulnerability

Although the offset can be picked arbitrarily, it is applied to a heap memory
location, which is affected by ASLR on most modern platforms. This makes it
hard to predict the exact source address. However, the impact of ASLR can be
dramatically reduced by creating a very large ELF image (more than 256MB).
Such allocation requires a big, contiguous area of memory - the first such area
in VBA and VBA-M's process memory starts around address 0x10000000. So
within a margin of error caused by ASLR, the image is guaranteed to be loaded
around this memory address.

To show this, a simple demonstration has been created: a 512MB ELF file,
containing a PT_LOAD segment in its program header, instructing the loader to
read 0x1000 bytes from file offset Ox67000000. This, together with the
0x10000000 base address, should yield the source address of 0x77000000,
which fits into the high memory range used by system DLLs on Windows.
Adding in the randomness of ASLR, this should result in an emulated
application randomly reading data from memory related to system libraries.
The ELF file also contains a regular code section with a simple program that
prints the leaked data as an ASCII dump.

The results were highly promising on both VBA and VBA-M. Only a small
percentage (12%) of executions crashed the emulator. Even with the random
nature of the exploit, leaked strings often contained operating system versions,
environment variables, path to the current directory, and other meaningful
information.

& VisualBoyAdvance-M (SVN1229)- 98% - O X

File Options Cheats Tools Help
- 2 1) 3 3 2 09 S 1) &
= . -

The ELF file used in the above demonstration, along with its source code,
should be enclosed with this document.



Wrong memory accesses with invalid offsets to section names

Every section defined in the ELF section table should have a name. All names
are stored as a list of null-terminated strings in a separate section, traditionally
called “.shstrtab”. Each entry in the section table contains an offset from which
the section name should be read.

Data of section 1:
.shstrtab\0Osection2\0section3\0

A A
<section 1>
name offset: 0

<section 2>
name offset: 10

<section 3>
name offset: 19

The e_shstrndx field in the program header should determine the index of the
section header table entry that contains the section names. Sections are
indexed starting from 1. A value of O indicates that the loaded image has no
sections (and thus, no section name table). VBA handles this case as follows:

char *stringTable = NULL;
if(READ16LE (&eh->e_shstrndx) != 0) {
stringTable = (char x)elfReadSection(data,
Sh[READ16LE (&eh->e_shstrndx)]);

VisualBoyAdvance source code, elf.cpp:2670

If e_shstrndx is set to 0, the string table pointer remains set as NULL. This is
normally irrelevant - if the image has no sections, no operation will ever be
performed on that pointer. However, it is possible to create a malformed file
that both contains a nonzero number of sections, and sets the name table
index to 0. This would cause a null pointer dereference the first time a section
name is loaded. Additionally, by providing specially crafted name offsets in
section header entries, it's possible to point a section name anywhere in
memory and create arbitrary memory reads.

It's unfortunately impossible to access section names from within the emulated
code. Additionally, there are no emulator features that directly deal with
section names. Therefore, this attack vector doesn't seem particularly useful. It
is however included here, as its potential impact may change as new software
versions are released.




Multiple buffer overflow vulnerabilities while handling ELF file symbols

ELF files can also contain debugging symbols. The exact method of including
symbol information in ELF images depends on the compiler used to link the
program. VBA and VBA-M both support loading symbols encoded in “.symtab”
sections, which is a common method of introducing debug information to ELF
binaries.

The most vital piece of information about any symbol is its name. The ELF file
loader module in VBA has a function designed to read the name of any symbol,
based on its address:

char *elfGetAddressSymbol(u32 addr)
{
static char buffer[256];
(...)
if(addr == s->value) {
if(s->name)
strcpy(buffer, s->name);
else
strcpy(buffer, "");
return buffer;

}

VisualBoyAdvance source code, elf.cpp:285

No symbol name limit is enforced at any time, yet the name is loaded into a
static 256-byte buffer, resulting in a typical buffer overflow scenario. This
overflow would be capable of overwriting a whole slew of global variables, most
likely allowing for code execution. However, to exploit this potential
vulnerability, this code has to be called from somewhere else. It turns out this
function is used in two places - the in-built disassembler, to display symbols in
the disassembly, and in the in-built gdb debugging server, presumably for the
same purpose.

Search "elfGetAddressSymbel (" (10 hits in 3 files)
W:\code\vba\visualboyadvance-m\src\gba\armdis.cpp (3 hits)

Line 599: const char* s = elfGetRddressSymbol (value);
Line &09: const char* s = elfGetAddressSymbol (value});
Line €96: const char* s = elfGetRddressSymbol (offset + 4 + add):;

W:\code\vba\visualboyadvance-m\src\gba\elf.cpp (2 hits)
W:\code\vba\visualboyadvance-m\src\sdl\debugger.cpp (5 hits)

Line 901: elfGethddressSymbol (debuggerBreakpointList[i] .address));
Line 1363: size t 1 = strlen(elfGetAddresssymbol(pc + 4 * 1i));
Line 1371: fprintf (f, format, addr, elfGetRddressSymbol (addr), buffer);
Line 1382: size t 1 = strlen(elfGetAddresssymbol(pc + 2 * i));
Line 1391: fprintf (f, format, addr, elfGetRddresssymbol (addr), buffer);

The disassembler seemed like an easier target, so this code path was chosen
for further analysis. It turned out, exploitation of this vulnerability was not
even necessary. The disassembler's GUI routine happened to have a different
buffer overflow vulnerability, even featuring a source code comment claiming
that “the buffer is definitely large enough, no need to worry”.



// what an unsafe calling convention

// examination of disArm shows that max len is 69 chars
// (e.g. 0x081lcb6db), and I assume disThumb 1is shorter
char buf[80]3

const char*x s = elfGetAddressSymbol(value)
if (xs) {

*dest++ = ' '3

dest = addStr(dest, s)3

VisualBoyAdvance-M source code: viewers.cpp:146, armdis.cpp:599

This one is a stack-based buffer overflow. On classic VBA it is trivial to exploit,
since none of the modern security measures are in place. On VBA-M, the stack
cookie mechanism prevents exploitation of this particular vulnerability.
Additionally, in VBA-M's code, the strcpy and sprintf «calls in
elfGetAddressSymbol were replaced by their “safe” counterparts, strncpy and
snprintf, so the original vulnerability is not present too.

An example, proof of concept exploit should be enclosed to this document. It
works by overwriting the return address with 0x20202020, and uses the trick
described earlier to allocate the ELF image around address 0x10000000. The
512MB file contains a NOP sled, with a calc.exe shellcode stub at the end.

In order to trigger the vulnerability, the user has to: Load a malicious ELF file,
open the in-built disassembler by selecting Tools » Disassemble, then click
“Goto R15".

Vendor status

The mainstream version of VBA has been officially discontinued for more
than 10 years, making any form of vendor-coordinated disclosure impossible.
VBA-M is still being actively worked on, so their team has been informed about
the found issues before publishing the document.

+ 13.06.2018 - the vulnerabilities have been reported
« 26.06.2018 - a fix has been created and scheduled for release

« 01.07.2018 - releasing VBA-M version 2.1.0, which contains the
aforementioned fix

*+ 04.07.2018 - publishing this document

Disclaimer

This document, along with all information it contains, is provided "as is",
without any warranty. The author is not responsible for the misuse of the
information provided in this document. Permission is granted to redistribute
this document, as long as its content and copyright notices remain intact.



