
VisualBoyAdvance 1.8.0 - stack-based buffer
overflow in XPC file parsing results in code execution

jx9716 // TheZZAZZGlitch

Abstract

VisualBoyAdvance is a well-known and widely used emulator for Gameboy and
Gameboy Advance systems. Despite its main branch being discontinued since
2004, it still remains a common choice for emulating the aforementioned
platforms.

As the emulator's features focus mostly on gaming, the application provides
support for importing cheat codes in several formats. Most notably, it supports
loading and saving XPC files, which are used by ActionReplay-based cheating
devices. However, when importing XPC file data, no bounds checking of any
kind is done on the user supplied information. A stack-based buffer overrun
vulnerability is present in the file data parsing subroutine, which leads to
arbitrary code execution by providing a malicious code list.

XPC file format

XPC is a file format designed to hold cheat code data for multiple games in a
single file. The file is required to start with an identifier string, which is normally
set to SharkPortCODES. After going through several bytes of unknown and
irrelevant purpose, we arrive at the file contents - a serialized table of cheat
sets to apply, containing a serialized table of cheat lists for each cheat set.

uint32_t IdentifierStringLength;
char IdentifierString[IdentifierStringLength];
char Reserved[0xC];
uint32_t NumberOfGames;
[repeat NumberOfGames times] {

uint32_t GameNameLength;
char GameName[GameNameLength];
uint32_t NumberOfCodes;
[repeat NumberOfCodes times] {

CodeEntry SingleCodeEntry;
}

}

The knowledge about the structure of a single cheat code entry (marked above
as CodeEntry) is not necessary for our purposes.
All multibyte integers in the described file format are stored little-endian.
Although other identifier strings than SharkPortCODES are theoretically
possible, the discussed software (VisualBoyAdvance 1.8.0) only supports files
with the original identifier, and will reject all files that don't start with this
pattern.

The vulnerability

The emulator in question implements a very simplistic subset of the XPC file
format. The file loading process is prefaced by testing whether the first 12
bytes match the traditional signature:

0E 00 00 00 53 68 61 72 6B 50 6F 72 74 43 4F 44 45 53
 S h a r k P o r t C O D E S

If the check succeeds, the application immediately seeks to the
NumberOfGames field and proceeds to parse the list of game names, to
present a choice dialog to the user.

char buffer[1024];
int games = 0;
int len = 0;
// (...)
fread(&games, 1, 4, f);
while(games > 0) {
 fread(&len, 1, 4, f);
 fread(buffer, 1, len, f);
 buffer[len] = 0;
 m_games.AddString(buffer);
 // (...)
}
// (...)

GSACodeSelect.cpp:88 - VisualBoyAdvance 1.8.0 source code

The temporary buffer allocated on the stack is only 1024 bytes long, yet the file
format parser allows loading name strings of arbitrary length. This is a classic
example of a stack-based buffer overflow, which can lead to arbitrary code
execution. Since the last mainstream version of original VisualBoyAdvance was
compiled back in 2004, none of the standard security mechanisms are present
in the executable, making the vulnerability easily exploitable.

The exploit

Creating an XPC cheat list with a sufficiently long game name is enough to
trigger the vulnerability. Additionally, to make the vulnerable code run, the
NumberOfGames field value has to be greater than 1 - otherwise the emulator
will skip processing the game names and will immediately start loading the
cheat list.
The process stack is affected by ASLR, but the classic "jmp esp" trick is enough
to make the exploit very reliable.

"\x0e\x00\x00\x00SharkPortCODESxxxxxxxxxxxx (fake header)
 \x02\x00\x00\x00\x00\x05\x00\x00 (the name is 0x500 bytes long)
 AA (...) AAAAA (padding)
 [offset to jmp esp][payload]"

An example proof of concept calc.exe exploit should be enclosed to this
advisory file.

In order to trigger the vulnerability, the user has to:

• Load any GBA ROM,

• Load the malicious XPS file, most commonly by selecting
File » Import » GameShark code file

Although all versions of VBA are vulnerable, the attached exploit will only work
with the latest mainstream version, 1.8.0. This is because in the proof of
concept payload, the offset to jmp esp was chosen to be within the
application's image base, so different application versions are incompatible.
This can easily be circumvented at a cost of portability between different
operating systems - simply choose a different offset within a fixed-base system
library. Creating a NOP sled is also a possibility.

Affected versions

All main branch versions of VisualBoyAdvance to this date are affected by this
vulnerability.

VBA-ReRecording is a branch of the stable 1.7.2 version of VisualBoyAdvance,
and thus, it is also vulnerable. The executables have the NX bit enabled.
However, they also contain call CreateProcess and call VirtualProtect
instructions, so constructing a ROP chain circumvents the problem.

VBA-M is the only popular branch of VBA that is actively developed to the
current day. All versions of VBA-M still use the same buggy code; however, the
downloadable binaries of the emulator are compiled with Microsoft Compiler's
/GS flag, making the attack too hard to perform reliably outside of platforms
with low stack cookie entropy, like virtual machines.

Vendor status

Since the mainstream version of VBA has been officially discontinued for more
than 10 years, the vendor hasn't been informed about the issue.

Disclaimer

This document, along with all information it contains, is provided "as is",
without any warranty. The author is not responsible for the misuse of the
information provided in this document. The advisory is provided for educational
purposes only. Permission is granted to redistribute this document, as long as
its content and copyright notices remain intact.

